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ABSTRACT
Today’s mobile video users have unsatisfactory quality of experi-
ence mainly due to the large network distance to the centralized
infrastructure. To improve users’ quality of experience, content
providers are pushing content distribution capacity to the edge-
networks. However, existing content replication approaches cannot
provide sufficient quality of experience for mobile video delivery.
Because they fail to consider the knowledge of user-behavior such
as user preference and mobility, which can capture the dynamically
changing content popularity. To address the problem, we propose
a user-behavior driven collaborative edge-network content repli-
cation solution in which user preference and mobility are jointly
considered. More specifically, using user-bahavior driven measure-
ment studies of videos and trajectories, we first reveal that both
users’ intrinsic preferences and mobility patterns play a significant
role in edge-network content delivery. Second, based on the mea-
surement insights, it is proposed that a joint user preference- and
mobility-based collaborative edge-network content replication solu-
tion, namely APRank. It is comprised of preference-based demand
prediction to predict the requests of video content, mobility-based
collaboration to predict the movement of users across edge access
points (APs), and workload-based collaboration to enables collabo-
rative replication across adjacent APs. APRank is able to predict the
fine-grained content popularity distribution of each AP, handle the
trajectory data sparseness problem, and make dynamic and collabo-
rative content replication for edge APs. Finally, through extensive
trace-driven experiments, we demonstrate the effectiveness of our
design: APRank achieves 20% less content access latency and 32%
less workload against traditional approaches.
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1 INTRODUCTION
According to Cisco Forecast, mobile video traffic will occupy 78% of
the world mobile data traffic by 2021 [1]. Different from traditional
PC/laptop-based video streaming, mobile video streaming relies on
the usage of mobile devices and wireless networks, allowing people
to receive video content on the move. The explosive increase of
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Figure 1: Diagramof user-behavior driven collaborative edge-
network content replication.

mobile video streaming is changing the video delivery landscape,
and the change has challenged traditional video content delivery,
which uses centralized infrastructure (e.g., content delivery network)
inside the network backbone for content distribution. To alleviate
the load of the network backbone and reduce users’ content access
latency, Internet service providers (ISPs) and content providers (CPs)
are moving content distribution capacity to the edge-networks (e.g.,
on access points)[2, 3].

Edge-network based content delivery platform acts as a crowd-
sourcing system that offloads content distribution tasks to massive
edge devices [4–6]. The uniqueness of content replication in current
edge-network lies that both the bandwidth capacity and cache ca-
pacity of the edge devices are tightly limited (usually several Mbps
and GBs), which are apparently smaller than that of CDN servers.
One way to handle the challenge is to introduce collaborative repli-
cation in the edge-network, which enables APs to share the cached
contents through a backhaul network. When an AP receives a con-
tent request, it can fetch the content from adjacent APs that cache
the content via the backhual network, instead of fetching it from
the CDN servers[7–10]. Therefore, collaboration among APs can
reduce the operational cost (e.g., cache and bandwidth cost) of the
edge-network [11–13].

There are several limitations making traditional approaches not
sufficient for today’smobile video delivery. (1) Traditional approaches
cannot reflect the preferences of individuals, which can only be in-
ferred by a collaborative knowledge of requests in different APs. (2)
They cannot prefetch content according to user mobility, leading to
request missing. For example, a mobile user is generally regarded as
non-related users when s/he requests videos at different locations.
(3) They cannot reflect the dynamically changing popularity and
might cache content that is not needed in the near future.

To address the above challenges, we propose a joint user preference-
and mobility-based collaborative edge-network content replication
solution, namely APRank. More specifically,
▷ First, using large-scale measurement studies of users’ prefer-

ences of videos and trajectories, we reveal that both users’ intrinsic
preferences and mobility patterns play a significant role in edge-
network content delivery. Our key observations include: (1) user
preference (based on the history of requested videos) is relatively
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stable over time (Sec. 2.2); (2) users have regular back and forth
mobility behaviors patterns, involving 2 − 4 regularly visited APs
where they tend to watch videos (Sec. 2.4).
▷ Second, based on the measurement insights, we design user

preference and mobility predictive models to capture the popular-
ity distribution of content across different APs. We employ the
Markov random fields (MRFs) theory and Gibbs sampling to esti-
mate the probabilities that users watch each video depending on the
group-based user preference (Sec. 4). To handle the trajectory data
sparseness problem, an iterative algorithm is proposed to predict the
movement of users based on the crowd mobility patterns (Sec. 5).
▷ Third, using the previous predictive models, we formulate the

collaborative content replication problem as an optimization prob-
lem. The objective is to minimize the overall latency and caching
cost under limited cache capacity and dynamic workload. We then
employ a greedy strategy to practically solve this problem in an
online manner (Sec. 6).

We also conduct trace-driven experiments to demonstrate the
effectiveness of our design. Compared with traditional content repli-
cation approaches, APRank can improve quality of mobile video
streaming significantly, e.g., 20% less access latency, 32% less work-
load of CDN server (Sec. 7).

2 MEASUREMENT
2.1 Datasets
Traces of AP information is provided by a mobile App that asks users
to respond to questions on how they use wireless networks. In partic-
ular, we have collected over 1 million APs in Beijing city, including
the Basic Service Set Identifier (BSSID), timestamp, location and
point of interest (PoI) of each AP. Using these traces, we can obtain
the geographical distribution of edge APs.

Traces of mobile video sessions is collected by one of the most
popular video providers in China. How users watch videos in the
mobile video streaming App has been recorded. The dataset was
collected in 2weeks of March 2016, containing 2million users watch-
ing 0.3 million unique videos in Beijing city. In each trace item, the
following information is recorded: the user ID, the timestamp and
location when and where the user watches the video, the title and
duration of the video, etc. Based on these traces, we can study the
user preference and mobility.

2.2 User Preference
We study the persistence of user preference of videos, which is gen-
erally comprised of multiple kinds of interests, such as TV series,
movie and variety show[14]. Hence, users’ preferences are not gen-
erally binary decisions, e.g., like or dislike of a video, but have a
variety of granularities, e.g., “Movie → Fantasy Movie → Lord of the
Rings". We use a two-level category hierarchy to quantify the pref-
erence, shown in Fig. 2. For example, the “Movie" category includes
the “Lord of the Rings" sub-category. All the videos related to “Lord
of the Rings" are included in the “Lord of the Rings" sub-category. For
the u-th user, the value auc of c-th category is the proportion of the
number of c-th category requests over the number of total requests.
In the analysis, we focus on the users who watch videos at least
once a day. For each user, we calculate the average cosine similarity
using her/his two-level preference category hierarchy between the
first and second week, i.e., 12 (p1 · q1 + p2 · q2), where pi (resp. qi )
is the normalized distribution (∥pi ∥ = ∥qi ∥ = 1) of requests of
Level i categories in first (resp. second) week. Fig. 3 plots the CDF
of similarity coefficient. The result shows that more than 80% users’
similarity coefficients are over 0.8, indicating that the preference
of users in a consecutive time window (e.g., one week) is relatively

User u

TV series Movie

Lord of the RingsGame of Thrones

uca
Level 1

Level 2

Figure 2: Two-level category
hierarchy.
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preference.
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Figure 4: Cache hit rates of different users (the percentage
number in brackets is the ratio of cache capacity to the total
number of videos).

stable. It is possible to design an demand prediction based on the users’
preferences.

2.3 Today’s Edge Cache Performance
In today’s mobile video systems, we measure the cache hit rate for
mobile and static users under different cache capacities (we assume
the video content size is unit [15, 16], e.g., cache capacity is 10mean-
ing only 10 videos can be cached in each AP). We let the requests be
served by the nearest APs. When a requested video is not cached by
an AP, it will be fetched from the distant CDN server . In the mea-
surement, to ensure that each AP has sufficient requests, only the
top 10% most popular APs (which receive most requests) are consid-
ered. Fig. 4 shows the average cache hit rates using popularity-based
replication approach (where videos are prioritized to be replicated
or removed according to the videos’ historical popularity) under
different cache capacities[17]. We observe that the cache hit rate of
mobile users is generally lower than that of static users, e.g., the gap
between mobile users and static users is about 0.2 with 0.42% cache
capacity. So today’s edge-network cache performance is not good
for mobile video content.

Possible reason 1: Small cache capacity results in poor caching
performance. In Fig. 4, when the cache capacity is small (e.g., less
than 100), the gap between static users and mobile users is large,
which is up to 0.2. It indicates that collaboration among adjacent APs
sharing the cached contents through a backhaul link is a promising
solution to improve the cache performance for mobile video content.

Possible reason 2: User mobility results in poor caching perfor-
mance. In Fig. 4, when the cache capacity is large (e.g., greater than
100), the gap between static and mobile users also exists. Thus, user
mobility probably leads to the gap.

2.4 User Mobility Patterns
Users who watch videos on the move could connect more than a
single AP. For the CPs, when performing content replication for the
mobile users, they need to strategically determine the APs (that are
connected by the same mobile users) where the videos should be
replicated. To this end, we investigate the impact and characteristics
of user mobility in a mobile video system.

First, we measure the mobility intensity of mobile users. In the
analysis, we focus on the behaviors of active users who requested at
least ten videos daily in our 2-week traces, and record the average
result of each day. In Fig. 5, the solid curve plots the relation between
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Figure 5: Statistics of move-
ment of mobile users.
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Figure 7: Framework of APRank.

the number of movements and different connected APs in one day.
We observe that mobile users issue requests frequently in different
APs, but the number of APs (per user) is quite limited. The histogram
represents the proportion of mobile users versus the corresponding
number of APs. We observe that 55% of users only issue video
requests from 2 APs, and 80% of users request videos from less than
4 APs. These results show that mobile users have regular back and
forth behaviors, involving 2− 4 regular visited APs where they tend
to watch videos.

Next, we investigate why user mobility results in poor caching
performance. We focus on the mobile users who access only two APs
within one day (occupying 55% of the total mobile users, shown in
Fig. 5). We define that a user’s dominant AP is the AP which receive
the most requests of the user. Fig. 6 shows the CDF of cache hit rates
of mobile users in their dominant APs and other AP (under cache
capacity = 60 and popularity-based replication). It indicates that
mobile users generally have volatile quality of experience across
different APs.

In summary, since user mobility affects the performance of content
distribution in the edge-network greatly, it is promising to design an
mobility-based collaboration to improve the content distribution for
mobile users.

3 APRANK: USER PREFERENCE AND
MOBILITY-BASED AP COLLABORATION
FRAMEWORK

Based on the measurement insights in mobile video streaming, we
design the key components of APRank. APRank jointly utilizes the
user-bahavior patterns for content replication based on the regional
information (a region is comprised of adjacent APs) in the edge-
network, which is illustrated in Fig. 7.

In this figure, the following three-stage workflow of APRank is
presented.
Stage I: Demand prediction is to predict the possible requests for
expected future time in each AP, which provides the main basis of
subsequent replication strategy. User grouping runs offline peri-
odically in a global view (the view of CPs) based on the two-level
category hierarchy of preference. In each time window t (in our
experiments, t = 1h), content demand prediction of each group runs
online based on the history of demand. The output of this stage is
an initialized local future demand in each AP.
Stage II: Mobility-based collaboration is to predict the move-
ment of users across different APs based on the user mobility pat-
terns. A crowd mobility-based user movement algorithm runs online
in a local view (each AP) based on the most recent user movement
information and future demand predicted in the first stage. This
outputs final local future demand by aggregating user mobility with
the corresponding local requests from different APs.
Stage III: Intra-regional collaboration is a promising solution
to reduce the content access latency and alleviate the workload of
network backbone, when the edge APs are equipped with toughly
limited cache and bandwidth capacities. Region partitioning runs
offline periodically in a global view based on the latest location in-
formation of APs. In each time window t , a simple and fast content
replication algorithm can be computing in parallel across different
regions, which does not require the knowledge of global content
popularities. It runs online and updates the caches of adjacent APs
in each region based on their time-varying workloads and future
demands from the previous stage.

In the following sections, we will present the detailed design of
key algorithmic pieces.

4 PREFERENCE-BASED DEMAND
PREDICTION

Researchers have shown that users with similar preferences aremore
likely to exhibit the same behaviors in video service, social network
and recommendation system [18–21]. So we group users with similar
preferences. This enables us to decompose the global process of
prediction into separate per-group processes, which reduces the
prediction delay.

4.1 User Grouping
First, we quantify user preference using a two-level category hierar-
chy (Sec. 2.2). We project each user’s request history within a period
of time (e.g., one week) onto a predefined category hierarchy, where
each node is associated with a value auc representing the proportion
of the number of requests of u-th user to the c-th category over the
number of total requests. Second, we calculate the TF-IDF value
of each node in the hierarchy, where a user’s request history is re-
garded as a document and categories are considered as terms in the
document. Intuitively, a user would watch more videos belonging to
a category if the user prefers it. Further, if a user watches videos of a
category that is rarely watched by other users, the user will like this
category more prominently. In particular, a user’s preference weight
wu = {wuc : ∀c ∈ C} is calculated by equation (1), where the first
part is the TF value of c-th category in theu-th user’s request history
and the second part it the IDF vaule of the category.

wuc = auc × lg
|U|

|Uc |
, (1)

where Uc is the set of users who have watched the c-th category
among all the users U. Next, based on the preference weights of
their category hierarchy, we classify users into different groups
using a well-known clustering algorithm K-means (using Euclidean
distance between the coordinates of APs).
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Figure 8: An example (circles represent users, circles con-
nected by an edge represent they are neighbors, and different
colors represent different videos have been watch by a user).

4.2 Local Demand Prediction
Based on the previous observation that user preference is relatively
stable in a period of time, it is possible to predict which videos a
user will watch at time t +1 from the states of her/his corresponding
group at time t . Each user group д could be regarded as a user-user
similarity network, where similar users (min-max normalized cosine
similarity coefficient is greater than 0.5) are neighbors of each other.
Illustrated in Fig. 8, users u1,u2,u3,u4 are classified into the same
group and users u1,u2 have watched the blue video at time t . So the
user u3 will watch the blue video at time t + 1. It also shows that the
network topology of each group may be changed on timescales of
weeks (i.e.,T ). For example, u1,u2,u3,u5 are classified into the same
group and the edges are different at time t +T .

We employ the theory of Markov random fields (MRFs) [22, 23]
to associate each user with a confidence probability of watching a
video. In the MRFs, the problems are how to assign different weights
to the parameters and how to estimate the probabilities based on
the network.

Let yuv = 1 (resp. y′uv = 1) if the u-th user has watched the v-th
video at time t (resp. t + 1) and 0 otherwise (we use ′ to represent
the time t + 1 unless otherwise noted). For each user, we define his
neighbors, Uu , as the set of users similar to u-th user. Using the
theory of MRFs, the probability of video labelling is proportional to
e−F (y

′
uv ).
F (y′uv ) = −αN1 − βN10 − γN11 − N00,

N1 =
∑
j∈Uд

yjv , N10 =
∑
j∈Uu

(1 − y′uv )yjv + (1 − yjv )y′uv ,

N11 =
∑
j∈Uu

y′uvyjv , N00 =
∑
j∈Uu

(1 − y′uv )(1 − yjv ),

(2)

where Uд is the set of users in group д. In the terminology of
MRFs, F (y) is referred as the potential function. This function defines
a group-based Gibbs distribution of the network, the probability
P(y′uv |θ ) =

1
Zv (θ )

e−F (y
′
uv ), where θ = (α, β,γ ) are parameters and

Zv (θ ) as the partition function in the theory of MRFs is a normalized
constant that is calculated by summing over all the configurations,
i.e., Zv (θ ) =

∑
u
e−F (yuv ). To calculate the probability, we use a Gibbs

sampler:

P(y′uv = 1|y[−u]v ,θ ) =
P(y′uv = 1, y[−u]v |θ )
1∑

k=0
P(y′uv = k, y[−u]v |θ )

=
eα+(β−1)M

0
u+(γ−β )M

1
u

1 + eα+(β−1)M0
u+(γ−β )M1

u

(3)

where y[−u]v = (y1v , · · · ,yu−1,v ,yu+1,v , ...,yt
|Uд |v

), M0
u and M1

u

are the numbers of neighbors of u-th user, labelled with 0 and 1,
respectively. It is difficult to use the maximum likelihood estimation
method directly to estimate the parameters θ = (α, β,γ ), because
the partition function Zv (θ ) is also a function of the parameters.

Thus, we use the quasi-likelihood estimation method based on a
basic logistic regression model,

log
P (y′uv = 1 |y[−u]v , θ )

1 − P (y′uv = 1 |y[−u]v , θ )
= α + (β − 1)M0

u + (γ − β )M1
u . (4)

Overall, the procedure of our preference-based demand prediction
is illustrated in Algorithm 1 (line 1–line 14). In particular, we quantify
the user preference (line 1) and construct the user-user similarity
networks (line 2–line3). We initialize the parameters (line 5) and
update them using a quasi-likelihood estimation method based on a
linear logistic model (line 6). Then, in each time windows, we utilize
the Gibbs sampling to iteratively obtain the stabilized posterior
probabilities (line 7–line 11). Finally, we calculate the local demand
of each AP (line 12).

5 MOBILITY-BASED COLLABORATION
The reason we propose an mobility-based collaboration in a mobile
video system lies on two fronts. (1) More and more users are likely to
watch videos on the move across different APs, resulting in multiple
APs are accessed by the same users. These users generally have
poor experiences (Sec. 2.3). (2) Users have regular back and forth
behaviors for a considerable time, involving 2−4 regular visited APs
where they tend to watch videos (Sec. 2.4). Based on these insights,
we design a mobility-based collaboration to predict the movement
of users across different APs.

Instead of identifying and modeling personal mobility pattern [20,
24–28], we propose to capture crowd mobility patterns eliminating
the uncertainty and randomness of personal mobility to predict the
movement of users. For example, there are 100 users in AP l1 and
several users (may be 10 or 20) will move from l1 to l2. We want
to predict the proportion of users (e.g., 10% or 20%), rather than
the exact users (e.g., u1,u3, · · · ) moving from l1 to l2. Under the
assumption that the movements of crowd are generally consecutive,
not instantaneous (i.e., if there are movements between two APs at
time t , it is more likely to exist movements at time t + 1), we develop
a reactive-sensing method (e.g., AP l2 can sense the number of users
coming from AP l1 at time t and there will be similar proportion of
users moving from l1 to l2 at time t + 1). Compared with common
proactive-predicting method (e.g., AP can exactly predict the next
AP where a user will go to based on extensive historical trajectory
data of each user [24, 25, 29]), our reactive-sensing method well
captures crowd mobility patterns, having the following advantages:
(1) increase the accuracy, and (2) respond to users with less trajectory
data.

We consider a general network architecture where a set L of
L edge APs provide video content access to their users. Let ol =
(o1l , · · · ,oLl ) denotes the number of users from other APs to l-th
AP at time t . The real demand distribution of each AP is given,
dl = (dl1, · · · ,dlv , · · · ,dlV ), where dlv is the request proportion
of video v in l-th AP at time t . Our goal is to estimate the change
of popularity in each AP due to the user mobility. Without loss of
generality, given a specific l-th AP, we want to obtain the future
demand distribution d′l at time t + 1. The problem d′l can be solved
using a crowd mobility-based user movement algorithm derived
from PageRank,

d′l = dl ,k =

∑
i ∈L

∑
v ∈V

oildiv ,k−1∑
i ∈L

oil
, (5)

where k is the number of iterations.
The details are presented in Algorithm 1 (line 14–line 23). It

adopts the value iteration technique, which extends the PageRank
and uses L2 norm to estimate errors. At every iteration, the future
demand distribution d′l is updated based on the user movement and
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previous iteration result (line 18). This process continues until dl ,k
begins to converge.

Algorithm 1: Demand Prediction
Input: the set of videos V; category hierarchy au of u-th

user; the set of usersU; the set of users Uc of c-th
category; video label yu of u-th user; local demand dl
and user movement ol of l-th AP.

Output: local demand d′l at time t + 1.
1 calculate the preference weight wu = {wuc : ∀c ∈ C} with

equation (1)
2 classify users into groups G with K-means algorithm
3 construct the user-user similarity networks Gs
4 for v ∈ V do
5 initialize the parameters θ , n1 (e.g., 0, 0)
6 estimate θ using quasi-likelihood approach with

equation (4)
7 form = 1, · · · ,M do
8 update the value of y′uv with equation (3)
9 n1 = n1 + y′uv

10 end
11 y′uv =

n1
M

12 dlv =
∑

u ∈Ul

y′uv + dlv

13 end
14 initialize dl ,0 = (dlv : v ∈ V), δ = 0, k = 1
15 while δ ≥ ε and k + + do
16 δ = 0
17 for all l ∈ L do
18 update the value of dl ,k with equation (5)
19 δ = δ +

dl ,k − dl ,k−1

2

20 end
21 end
22 d′l = dl ,k
23 return d′l

6 INTRA-REGIONAL COLLABORATIVE
CONTENT REPLICATION

We enable APs to share the cached contents through a backhaul
network. If the requested content is not in the cache of the local AP,
it can retrieve the requested content from the caches of adjacent
APs instead of from the CDN servers.

6.1 Region Partitioning
Recent works have shown that an optimal local content replication
strategy (i.e., content tailored to each local cache) outperforms an
optimal global replication strategy [30]. These results illustrate that
there is room for improvement from a purely global to local content
replication. However, presently there is no universal standard of
region partitioning. In general, a city can be partitioned into individ-
ual regions based on road network or density information. Thus, we
employ a simple and fast clustering algorithm [31] to partition the
APs into regionsR based on their longitude and latitude information.
Under two assumptions that region centers are characterized by a
higher density of APs than their surroundings and by a relatively
large distance from other APs with higher densities, this algorithm
recognize the regions regardless of their shape and of the dimen-
sionality of the space. Note that other clustering algorithms (e.g.,
K-means and DBSCAN) also can be used in the procedure of region
partitioning.

6.2 Problem Formulation
We formulate the collaborative replication problem with the con-
sideration of minimizing the total content replication and content
access latency cost of all edge APs.

Replication cost: In edge-networks, an abundant of APs are
scheduled to replicate content, which incurs influential pressure
for the CDN server. Thus, we adopt replication cost based on the
workload of CDN server. We follow the work in [5, 32] and the
replication cost per unit data sL+1 can be calculated as follows,

sL+1 = −µ log(1 −
σL+1

σL+1,th
),

where σL+1 is the current server workload and σL+1,th is the server
threshold load, and µ is the tuning parameter to guarantee the repli-
cation cost is consistent with latency cost. Thus, the rationale behind
sL+1 is that it is cheap to replicate content when the CDN server is
under small utilization.

Latency cost: The average latency per unit data bl that the l-th
AP serves own requests through itself is comprised of a fixed latency
and a volatile latency depending on the current workload [5], which
can be calculated as below,

bl = b
1 σl
σl ,th

+ b0,

where σl is the current workload, σl ,th is the threshold load of l-th
AP, b1 and b0 are constant variables. Furthermore, the latency bl j
that the l-th AP serves own requests through the j-th AP can be
computed using the minimum cost path between l-th and j-th AP,
and thus satisfies the triangle inequalitybl j ≥ bl +bj . In our problem,
we simplify bl j = bl +bj and bl l = bl . Similarly, the latency of CDN
server is that bL+1 = b1 σL+1

σL+1,th
+ b0.

We assume that the APs across different regions act indepen-
dently replication strategies. Thus, our problem can be decomposed
into |R | independent sub-problems that minimizes the total cost of
each region. The sub-problem can be formulated as the following
optimization function:

min
{x′

Nr
}

J(x′
Nr

) =
∑
l ∈Nr

∑
v ∈V

∑
j ∈Nr
∪{L+1}

d ′lvb
′
l jλ

′
lv j

+
∑
l ∈Nr

∑
v ∈V

x ′lv (1 − xlv )s
′
L+1,

(U)

subject to ∑
j ∈Nr
∪{L+1}

λ′lv j = 1, ∀l,v, (6)

λ′lv j ≤ x ′jv , j ∈ Nr ,∀l,v, (7)∑
v ∈V

x ′lv ≤ Hl , ∀l, (8)
where λ′lv j indicates whether the users in l-th AP will download
v-th content from the j-th AP (L + 1-th AP is the CDN server) at
time t +1 (λ′lv j = 1) or not (λ′lv j = 0) andNr is the set of APs in r -th
region,Hl is the cache capacity of l-th AP. The indicator variable x ′lv
indicates whether v-th content will be cached at time t + 1 (x ′lv = 1)
or not (x ′lv = 0). Then the replication strategy of l-th AP at time t + 1
is given by the vector x ′

l = (x ′l1, · · · , x
′
lV ). In our objective function,

the first term is the total latency cost and the second term is the
total replication cost. Equation (6) ensures that each request must
be served by an AP or the CDN server. Equation (7) ensures that if a
request of v-th content is redirected to the j-th AP, the v-th content
must be cached in the j-th AP. Equation (8) is needed to satisfy the
limitation of cache capacity.

Clearly, our problem is very hard to solve optimally. [15] proves
that the joint user redirection and content placement problem which
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only minimizes the content access latency is the NP-hardness prob-
lem – Helper Decision Problem. It is easy to see that our problem
ignoring the replication cost is equivalent to solving the problem in
[15]. Thus, our problem J is also NP-hard.

To guarantee a real-time replication strategy, we employ a greedy
algorithm working on each region, presented in Algorithm 2. Given
the r -th region, the greedy algorithm starts with an empty cache of
each AP in r -th region and all the requests are served by the CDN
server (line 3); at each iteration, it addsv-th content with the highest
marginal value {argmax∀l ,v s .t . x ′

lv=0
∆J = J(x ′lv = 0)−J(x ′lv = 1)}

to the corresponding cache of l-th AP (J(x ′lv = 1) means we only
change the value of x ′lv and the other values of x′

Nr
are fixed) and

then the requests of v-th content can be fetched from l-th AP (line
4 – line 9). Hence, when the highest marginal value ∆J ≤ 0 or the
caches of APs are full at one iteration, the algorithm should stop.

Algorithm 2: Replication Strategy
Input: the set of videos V; local demand d′l ; workload σl ;

replication strategy xl ; latency cost bl and replication
cost sL+1 of l-th AP.

Output: local replication strategy x′l at time t + 1.
1 cluster the APs into clusters with the algorithm [31]
2 predict the workload σ ′ of each AP with the SARIMA model
3 initialize x′l = (x ′lv = 0 : ∀v),∀l
4 while ∆J > 0 and

∑
l

∑
v
x ′lv ≤

∑
l
Hl do

5 (l∗,v∗) = argmax∀l ,v s .t . x ′
lv=0

{J(x ′lv = 0) − J(x ′lv = 1)}
6 ∆J = J(x ′l ∗v∗ = 0) − J(x ′l ∗v∗ = 1)
7 if ∆J > 0 and

∑
v
x ′lv ≤ Hl ∗ then

8 x ′l ∗v∗ = 1
9 end

10 end
11 return x′l

7 EVALUATION
In this section, we conduct trace-driven experiments to validate the
effectiveness of APRank. The results show that (1) the prediction
models in APRank have a relatively high precision (Sec. 7.2); (2)
APRank can improve quality of mobile video streaming significantly,
e.g., 20% less access latency, 32% less workload of CDN servers
(Sec. 7.4) with more than 1000 APs and over 1million video requests.

7.1 Experiment Setup
In our experiments, to ensure each user has enough requests, only
the top 10% users with most requests are considered, including a
rich collection of 20, 047 users, 1, 534, 966 trace items and 85, 063
videos. We use the traces of video sessions in the first week to
train our prediction model and the traces in the second week to
test our replication approach unless otherwise noted. According to
the traces of AP information, we redirect these users’ requests to
the top 0.1% popular APs (about 1000 APs) under the assumption
that each request is served by the nearest AP. After the procedure
of user grouping in Sec. 4.1, all the users are classified into 100
groups, where the number of users is varying from 81 to 454. Using
the method in Sec. 6.1, we divide the Beijing city into 63 regions
where the number of APs is varying from 2 to 130. According to
[5, 33], the constant variables b1 and b0 in latency cost are 0.1 and
0.05 (resp. 0.5 and 0.15) for APs and the CDN servers, respectively.
The tuning parameter µ in replication cost is 5. We assume that the
content size is unit [15, 16] and all the APs have the same cache
capacity, expressed as the percentage of entire video set size, e.g.,
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Figure 10: Cache hit ratio ver-
sus the cache capacity.

cache capacity equalling to 0.6% means that each cache can store
500 videos (85063 × 0.6% ≈ 500). The time interval between time t
and t + 1 is 1 h.

We mainly compare APRank to the following traditional content
replication approaches. (1) Popularity-based replication derived from
the least frequently used (LFU) replacement algorithm. It replicates
(resp. removes) the videos with the highest (resp. lowest) popularities
in the recent period. (2) Stack-based replication derived from the
least recently used (LRU) replacement algorithm. It replicates (resp.
removes) the most (resp. least) recently watched videos in the recent
period. (3) Non-collaborative APRank. In contrast to APRank, it
replicates videos without the intra-regional collaborative content
replication in Sec. 6, i.e., if the requested content is not in the cache
of the local AP, users can only retrieve the requested content from
the CDN server.

In order to quantify the performance of different content repli-
cation approaches, we adopt the following metrics: (1) cache hit
rate, the proportion of the number of requests served by local cache
over the total number of requests; (2) average content access latency,
the average latency of all the requests formulated in Sec. 6.2; (3)
CDN server load, the proportion of the number of requests served by
CDN server (including local cache missed requests and replicated
requests) over the total number of requests.

7.2 Prediction Precision
In this part, we evaluate the effectiveness of our prediction models
(Sec. 4). For the demand prediction model, we predict whether a
user will watch each video in future and calculate the specificity
(true positive rate) and sensitivity (true negative rate). We repeat
the experiments for the top 10000 videos in different groups. Fig. 9
shows the relationship between the specificity and sensitivity of our
predictor using different thresholds for posterior probabilities. With
the threshold equalling to 0.38, the corresponding specificity and
sensitivity are the same and equal to 0.73.

7.3 Efficiency of APRank
We first explore the impact of collaboration among the APs on the
cache hit rate. Fig. 10 shows the cache hit rates of different content
replication approaches under different cache capacity. As expected,
increasing the cache capacity can increase the cache hit rate for all
approaches. Our observations are as follows. (1) The performance
of APRank is always better than that of non-collaborative APRank,
which indicates the efficiency of intra-regional collaboration. (2)
The non-collaborative APRank consistently outperforms Popularity-
based replication and Stack-based replication, which validates the
effectiveness of our predictive models based on user preference
and mobility. (3) APRank performs better than its counterparts for
all the cache capacity values. However, the gap between APRank
and other approaches decreases as cache capacity increases, e.g.,
the gap between APRank and Popularity-based replication (resp.
non-collaborative APRank) is 0.28 (resp. 0.09) with 0.04% cache
capacity, while the gap is 0.05 (resp. 0.03) with 0.72% cache capacity.
It indicates that APRank could significantly improve the cache hit
rate with small cache.
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Figure 13: Impact of cache capacity.

7.4 Overall Performance: Parameter Impact
Analysis

Impact of workload. We analyze the impact of AP workload on
average content access latency with 0.14% cache capacity. In the
experiment in Fig. 11, we select the top (resp. end) 10% most pop-
ular APs as the heavy (resp. light) workload APs. Compared with
Popularity-based replication, APRank can reduce the average latency
by 19.5% (resp. 12%) with heavy (resp. light) workload. It indicates
APRank can achieve a larger improvement when the workload is
heavy.

Impact of AP number.We study the impact of the number of
APs in a region on cache hit rate. In the experiment in Fig. 12, there
are 63 regions where the number of APs is varying from 2 to 130,
and we calculate the cache hit rate of each region with 0.14% cache
capacity. As expected, increasing the number of APs can improve the
cache hit rate, as more APs collaborate with each other in a region.
Moreover, with the number of APs increasing, the performance
improvement slows down when the number is already greater than
a certain value (e.g., 30 in our experiment).

Impact of cache capacity. Finally, we show the impact of cache
capacity on content access latency and CDN server load in Fig. 13.
Increasing the cache capacity reduces the average latency and CDN
server load for all the approaches (Stack-based replication has a
similar performance with Popularity-based replication). APRank can
achieve a lower average latency with up to 20% (resp. 12%) reduction
and save about 32% (resp. 18%) of CDN server load, compared with
Popularity-based replication (resp. non-collaborative APRank). We
also observe that increasing cache capacity cannot continuously
reduce the average latency and alleviate the CDN server load when
the cache is already large (e.g., greater than 1.2%).

8 CONCLUSION
This paper addresses the challenges in the replication of mobile
video contents, resulting from the difference of users’ preferences,
mobility patterns, and diverse workloads in the edge-network. In
this paper, we propose the user-behavior driven collaborative edge-
network content replication, in which user prference and mobility
are jointly considered. First, using large-scale measurement studies,
we reveal that both users’ intrinsic preferences and mobility patterns
play a significant role in edge-network content delivery. Second,
we propose APRank, a joint user preference- and mobility-based
collaborative edge-network content replication solution. APRank
is comprised of preference-based demand prediction using a group-
based MRFs method, mobility-based collaboration using a crowd-
based iterative method, and workload-based collaboration taking

both content access latency and replication cost into consideration.
Finally, the extensive trace-driven experiments demonstrate the
effectiveness and superiority of our design, which provides high
cache hit rate and low access latency for mobile video users, under
dramatically changing content popularity and diverse AP workloads.
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